An electrophysiological study of the postnatal development of the corticospinal system in the macaque monkey.
نویسندگان
چکیده
Postnatal development of the corticospinal system was investigated in 13 macaques using noninvasive transcranial magnetic stimulation (TMS) of the motor cortex and direct electrical stimulation of corticospinal axons in the medullary pyramid and spinal cord. The latency of antidromic corticospinal volleys evoked from the pyramid and recorded from the motor cortex decreased dramatically during the first postnatal months. Our data predict that conduction velocity (CV) of the fastest corticospinal neurons over their cranial course would reach adult values at approximately 11 months. The CV of corticospinal neurons in the spinal cord increased with age but with a slower time course. In the neonate, the fastest spinal CV was estimated at 7.8 m/sec, approximately 10 times slower than in adults (mean 80.0 m/sec). Our data predict that full myelination of corticospinal axons in the spinal cord would not occur until approximately 36 months. No short-latency EMG responses were elicited in arm and hand muscles by TMS until 3 months of age; TMS thresholds were high initially and then fell progressively with age. When corrected for body size, relative latencies of EMG responses showed an exponential decrease during the first postnatal months. Our data are consistent with the hypothesis that fine finger movements are not observed before functional CM connections are well established and that rapid changes in the physiological properties of the corticospinal system coincide with the period in which precision grip is known to mature (3-6 months). However, corticospinal development continues long after simple measures of dexterity indicate functional maturity, and these changes may contribute to the improved speed and coordination of skilled hand tasks.
منابع مشابه
Differential Expression of Secreted Phosphoprotein 1 in the Motor Cortex among Primate Species and during Postnatal Development and Functional Recovery
We previously reported that secreted phosphoprotein 1 (SPP1) mRNA is expressed in neurons whose axons form the corticospinal tract (CST) of the rhesus macaque, but not in the corresponding neurons of the marmoset and rat. This suggests that SPP1 expression is involved in the functional or structural specialization of highly developed corticospinal systems in certain primate species. To further ...
متن کاملMyocardial Infarction in a Rhesus Monkey
Myocardial necrosis can be result from a number of causes including nutritional deficiencies, chemical and plant toxins, ischemia and metabolic disorder. The outcome of myocardial necrosis varies depending on the extent of the damage (Donald 2001, Jubb 1993, Radostits 1994, Vanvaleet 1986). Myocardial infarction without demonstrable of atherosclerosis were reported in a rhesus macaque (Gonder 1...
متن کاملPostnatal development of spatial coding in the gravity sensing system
The critical maturation time of central otolith neurons in processing spatial orientations was examined in Sprague-Dawley rats. With the use of immuno-hybridization histochemical methods, we observed c-fos expression in vestibular nuclear neurons responding to transverse movement on the horizontal plane as early as P7 and those to antero-posterior stimulation as early as P9. In the inferior oli...
متن کاملPostnatal development of spatial coding in the gravity sensing system
The critical maturation time of central otolith neurons in processing spatial orientations was examined in Sprague-Dawley rats. With the use of immuno-hybridization histochemical methods, we observed c-fos expression in vestibular nuclear neurons responding to transverse movement on the horizontal plane as early as P7 and those to antero-posterior stimulation as early as P9. In the inferior oli...
متن کاملتأثیر آلودگی صوتی در انتشار گلیکوکانژوگههای سطح سلول در گانگلیون مارپیچی نوزاد موش
Background: Some pregnant women are exposed to occupational noise, a risk factor for the development of the auditory system. The auditory system is one of the areas in embryonic development in which noise might induce aberrant development. Noise can change the gene expression pattern of an embryo and thereby modify the physiology of the auditory system. Therefore, noise can change the molecular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 1 شماره
صفحات -
تاریخ انتشار 1997